
Heuristic Search & Optimization

Diego Vicente Martín

November 11, 2017

Contents

1 Dynamic Programming 1

2 Linear Programming 2
2.1 Graphical Resolution . 3
2.2 Simplex Method . 4
2.3 Duality . 5
2.4 Modelling . 5

3 Logical Satisfiability 7
3.1 Resolution Method . 7

4 Constraint Processing 8

5 Search 8

1 Dynamic Programming

• Dynamic programming is a bottom-up procedure that suggests to
store sub-results (memoization) so that they can be reused later on to
compute the optimal solution of a given problem.

• The general procedure is:

1. Break the global problem into similar sub-problems and charaz-
terize their structure in a simple way.

2. Recursively define the value of an optimal sub-problem solu-
tions.

1

3. Compute the values of optimal subproblems in a bottom-up
fashion.

4. Construct an optimal solution from the computed intermediate
results.

2 Linear Programming

• A linear programming problem is in canonical form if:

1. The objective function is in form of maximization.
2. All the constraints are inequalities of the form ≤.
3. All the decision variables are non-negative.

The algebraic representation of the canonical form would be:

maxZ = cTx

Ax ≤ b, x ≥ 0

Where Am×n is the matrix of technological coefficients of m in-
equalities and n decision variables; xn×1 is the column vector of deci-
sion variables; bm×1 is the vector of resources and cn×1 is the vector
of costs or benefits.

• A linear programming problem is in standard form if:

1. The objective function is in form of maximization or mini-
mization.

2. All the constraints are equations.
3. All the decision variables are non-negative.
4. The vector of constant resources does not contain negative

components.

The algebraic representation of the standard form would be:

max /minZ = cTx

Ax = b, x ≥ 0

2

• We must take into account some transformations that can be useful
when solving linear programming problems:

– A minimization problem can be converted to a maximization one
changing the sign of the objective function:

minZ =

n∑
j=1

cjxj −→ maxZ ′ = −
n∑

j=1

cjxj

– We can change the direction of an inequality multiplying both
sides by -1:

n∑
j=1

aijxj ≥ bi −→ −
n∑

j=1

aijxj ≤ −bi

• Any inequality can be converted into an equality by adding or resting
a nonnegative varibale (slack variable) with a null coefficient (zero)
in the objective function.

n∑
j=1

aijxj ≤ bi ,
n∑

j=1

aijxj + si = bi

n∑
j=1

aijxj ≥ bi ,
n∑

j=1

aijxj − si = bi

2.1 Graphical Resolution

• Procedure:

1. Represent the problem in canonical form (though it is not strictly
necessary).

2. Draw a cartesian coordinate system where each axis repre-
sents a decision variable.

3. Represent each constraint as a region (that may be unbounded).

4. The intersection of all regions is the feasible region, the solution
space F .

5. Evaluate the objective function in the extreme points and
pick up the one that maximizes the objective function.

3

• If the problem does not have a unique optimal solution, then it is said
to have alternative optimal solutions. This is easily detected using
the graphical method, if the curve of isoprofit / isocost is parallel or
identical to one of the constraints whose extreme points are optimal
solutions.

• A problem is found to be unfeasible if and only if the region of fea-
sible solution is empty: F = ∅.

• This method is only useful with a maximum of 3 decision variables.

2.2 Simplex Method

• Procedure:

1. Start the problem by converting the task to standard form and
adding the necessary artificial variables to the problem (with
∞ coefficient in Z), in order to ensure an initial solution.

2. Compute the basic variables:

– Bi = {xa, xb, xc. . . } with n vectors (to be a square matrix)
– xBi = B−1i b

3. Select the entering variable by using the entering rule:

– yn = B−1i an

– zn − cn = cTBi
yn − cn

– Entering variable is n where min{zn − cn}∀n ∈ B
4. Select the leaving variable by using the leaving rule:

– θ = min{xBi
yn
} where n is the entering variable column of the

basis as long as θ > 0.

5. The solution is given by the value of x∗ = xBf
once the iterations

are over, and the value of the objective function z∗ = zf

• Interpretation of the results:

– If a slack variable is part of xf , there is an excess amount (if
the variable’s constraint was a lower bound) or a deficit (if it was
an upper bound) in the resources.

– One thing that points out that a problem is unfeasible is the fact
that an artificial variable is part of xf .

4

2.3 Duality

• A linear programming problem is in symmetric form (of maximiza-
tion) if:

– The objective function is in form of maximization.

– All the constraints are inequalities in the form of ≤.
– All the decision variables are non-negative.

– In case it is a minimzation problems, all constraints must be in
≥ form.

• If a primal problem is

maxZ = cTx

Ax ≤ b, x ≥ 0

then its dual problem is:

minW = bTx′

ATx′ ≥ c, x′ ≥ 0

If the problem is in symmetric form, and has an optimal solution to a
basis B, then x′T = cTBB

−1 is an optimal solution to the dual problem.

• The economic interpretation states: the dual variable x′i indicates
the contribution per unit of the ith resource bi to the variation in the
current optimal value z of the objective.

2.4 Modelling

• There are some well-known problems for which there are some already
created patterns.

• The demand problem, where ai is the capacity of the i origin, bj is
the demand of the j destination, and cij is the unitary cost of deliver
from i to j; the problem can be modelled like:

5

– Objective function: minZ =
n∑

i=1

m∑
j=1

cijxij

– The capacity is not exceeded:
m∑
j=1

xij ≤ ai

– The offer is satisfied:
n∑

i=1
xij ≥ bi

– The variables are positive integers: xij ∈ Z+

• The assignment problem, where n people must be assigned to m
tasks to be performed in an optimal way provided the unitary cost of
each assignment by each person, cij . This problem uses the variables
as boolean variables, where xij � 1, 0 depending if a person i has been
or not assigned to a certain task j.

– Objective function: minZ =
n∑

i=1

m∑
j=1

cijxij

– One task is assigned to each person:
m∑
j=1

xij = 1, ∀i

– One person is assigned to each task:
n∑

i=1
xij = 1, ∀j

• The network flow problem, where we have a graph G = (V,E) and
a function of cost, and we must find the cheapest path from one vertex
x1 to another xn. In this problem we will also use the variables as
boolean variables, where xij � 1, 0 depending if we have taken the
edge that connects i and j.

– Objective function: minZ =
n∑

i=1

n∑
j=1

cijxij

– Only one edge leaves the origin:
n∑

j=1
x1j = 1

– Only one edge arrives at the goal:
n∑

j=1
xin = 1

– There are as many entering edges as leaving ones in every node:
n∑

j=1
xil −

n∑
j=1

xlj = 0, ∀l ∈ V

6

3 Logical Satisfiability

• A propositional formula is in Conjunctive Normal Form (CNF) if
it’s in form of:

N∧
i=1

N∨
j=1

`ij

• A literal ` consists of an atom (one variable) in its assertion (x) or
negation (x̄).

• A literal ` is pure in F if ¯̀ does not appear in any clause of F .

• A tautology is an always true propositional formula for any instanti-
ation of its atomic expressions.

3.1 Resolution Method

• Davis-Putnam Algorithm:

1. Select a literal ` ∈ F
2. Apply Res{F, `} and write down the variable used and clauses

involved.

Res{(p ∨ r), (p̄ ∨ r)} = (r ∨ s)

Res{p, p̄} = {∅}

3. If it results in an empty clause {∅}, then F is not satisfiable.

4. If it results in F = ∅, end the problem. If not go back to step 1.

5. Consider the list of variables and clauses in inverse order, calcu-
lating whether > or ⊥ for each of them.

• Davis-Putnam-Logemann-Loveland Algorithm: consists of ap-
plying reduction on a formular F in form of a tree. The reduction
function consists in taking a variable and exploring the possibilities of
having the variable asserted or negated while the whole formula is still
true.

7

4 Constraint Processing

• A constraint network R = (X,D,C) consists of a finite set of values
(X) defined over domains (D) that contain the possible value for each
variable and a set of constraints (C).

• We can say that xi is arc consistent with xj if and only if for each
value ai there exists a value aj such that (ai, aj) ∈ Rij . If there is a
value that does not participate in a relation, it can be eliminated. Arc
consistency is not a bidirectional relationship.

• A constraint Rij is path consistent relative to variable xk if and
only if for every pair (ai, aj) ∈ Rij there is a value ak ∈ Dk such
that (ai, ak) ∈ Rik and (ak, aj) ∈ Rkj . Path consistency is indeed a
bidirectional relationship.

5 Search

• A problem space is composed by:

– The states set, that contains every possible state of every search
problem.

– The operators set, that contains every single action that can be
performed to the problem.

– The initial state.

– The goal.

• There are two important factor:

– The branching factor, b, that is a property of the state graph.

– The depth, d, that is a property of the problem.

• We can perform several algorithms:

– Breadth First Search (BFS): searches through all nodes of
a certain depth before exploring the ones deeper. It’s behavior
is best understood if we think of adding nodes to a queue to
be expanded. It is complete, optimal (with equal costs among
operators), efficient if goals are close to the root, but it consumes
exponential memory.

8

– Depth First Search (DFS): expands nodes depth-wise, and
thus it needs backtracking technique if the solution is not found
and even a depth limitation if the branch being expanded is in-
finite. By itself, it is not complete, it is not optimal, but it is
efficient as long as there is no cycles if the goals are away from
the root.

– Iterative DFS performs a DFS with a depth limitation that is
incremented each if the solution is not found in the current nodes.
If we set the depth increment to 1, it basically becomes a BFS.
It is complete, if the increment is one it is optimal, but it can
generate a lot of duplicated nodes.

– Depth First Branch-and-Bound performs a DFS until it finds
a solution or the cost of all paths exceed the cost of the best
solution found so far. Every time a solution is found, a new
bound is set at its depth.

• If we have no information, we perform a blind search, but we can also
have a perfect information or a heuristic, that is a partial knowledge
about the problem/domain that permits solving the problem efficiency
in this domain.

• We can find heuristics by solving simplifiend models of the problem
(constraint satisfaction), adding constraints, using a probabilistic
estimation or reasoning by analogy or metaphor.

• A heuristic is admissible if never overestimates the real cost of reach-
ing a goal.

• Some informed search algorithms are:

– Hill Climbing: chooses the next node to expand based on which
one of them has the best heuristic value. It is a greedy method, so
it can find some problems like local maxima or minimas, plateaus,
ridges. . . So it is not complete. It is useful and efficient with
consistent heuristic functions and we can solve its problems using
backtracking, or random restarts.

– Beam Search: it works as Hill Climbing, although it expands k
nodes each iteration. Opening the window improves the possibil-
ities of escaping from plateaus and finding shorter paths. Usually
the higher value of k, the better the solutions found, although it
is not always like that.

9

– Best First Search (BFS): always expands the most promising
node according to a given rule at a given time and orders the
nodes by its rule in a sorted queue to be expanded.

– A* is a BFS algorithm what uses the function f(n) = g(n)+h(n)
to evaluate the nodes, where g(n) is the cost of the travelled arcs
up to node n and h(n) is the value of the heuristic for that node.
It is complete, admissible (as long as the succesors fot the nodes
are finite and the heuristic is admissible too) and a more informed
heuristic will expand less nodes than a bad one.

– IDA* is a BFS search that uses a A* search evaluation in an
iterative deepening way, using a value η = min{f(i)} as an upper
bound to search for a solution. It is complete, it is admissible,
although it can be time-costly (exponential) although its memory
complexity is linear.

10

	Dynamic Programming
	Linear Programming
	Graphical Resolution
	Simplex Method
	Duality
	Modelling

	Logical Satisfiability
	Resolution Method

	Constraint Processing
	Search

